智能电网的基础(五)高压直流输电
二、高压直流输电的一些原理
关于换流器的原理就不展开了,很多电力电子内容,主要总结下直流输电控制方式。
直流输电控制系统的目标是:
1)保持直流功率、电压、电流和控制角在稳态值范围内;
2)限制暂态过电压和过电流;
3)交直流系统故障后,在规定的响应时间内平稳地恢复送电。
直流系统的主要优势就在于控制,其中也是比较复杂。
直流输电基本控制模块:
低压限流控制(VDCOL):低压限流环节的任务是在直流电压或交流电压跌落到某个指令值时对直流电流指令进行限制。
定电流控制(CCA):在极控制功能中定电流控制应用最为广泛。定电流控制的控制框图如图所示.在整流侧,定电流控制器的输入量是电流整定值TM3与实际电流TM4的偏差。
定熄弧角控制(AMAX):绝大多数直流工程的熄弧角定值都在15°~18°的范围内,熄弧角这一变量可以直接测量,却不能直接控制,只能靠改变换流器的触发角来间接调节。熄弧角不仅与逆变侧触发角有关,还取决于换相电压和直流电流的大小。
定电压控制(VCAREG):在整流和逆变方式下都设置了定电压控制功能模块,这个控制器的功能是用于降压运行,但它也有利于正常方式运行,其控制也采用的是PI调节方式。
辅助控制模块:
分接头控制(TCC):分接头控制的目的是保持触发角、熄弧角、直流电压运行在指定范围内,分接头控制的特点是调节速度比较慢。
无功功率控制(RPC):不同的直流工程,滤波器和电容器分成几组,由电力开关进行投切。
一般情况下,1)当两侧交流系统中的电压波动不大时,整流侧采用定电流控制,逆变侧采用定熄弧角控制。2)为了快速、精确地调节功率,整流侧采用定电流控制(或定功率控制),逆变侧采用定直流电压控制。
原因在于:整流侧用定电流控制可以控制触发角根据负载改变,定电压控制保持逆变侧触发角恒定,这样传输电流即功率传输大小可以通过整流侧触发角来控制.不过当整流侧触发角达到最小值(大概5°),就不能继续用定电流控制了,整流侧触发角只能恒定,也会变成定电压控制了。
这块和运行关系紧密,里面内容挺复杂,自己也不是特别熟悉,只是总结个皮毛。
三、高压直流输电系统分析的一些要点
1)换相失败
换相失败是直流系统比较关键且常见的故障。
当换流器做逆变运行时,从被换相的阀电流过零算起,到该阀重新被加上正向电压为止这段时间所对应的角度,也称为关断角(熄弧角)。如果关断角太小,以致晶闸管阀来不及完全恢复正常阻断能力,又重新被加上正向电压,它会自动重新导通,于是将发生倒换相过程,其结果将使该导通的阀关断,而应该关断的阀继续导通,称为换相失败。
换相失败主要原因是交流系统故障,其使得逆变侧换流母线电压下降。在一定的条件下,有些换相失败可以自动恢复。但是如果发生两次或多次连续换相失败,换流阀就会闭锁,中断直流系统的输电通道,在严重的情况下可能会出现多个逆变站同时发生换相失败,甚至导致电网崩溃。
换相重叠角的影响:当β>γ时,换相结束时,晶闸管能承受反压而关断。如果β<γ时(从图右下角的波形中可清楚地看到),该通的晶闸管(VT2)会关断,而应关断的晶闸管(VT1)不能关断,最终导致逆变失败。
2)无功补偿
直流系统的无功计算,也是要分为常规计算和系统仿真两部分。
采用普通晶闸管换流阀进行换流的高压直流输电换流站,一般均采用电网电源换相控制技术,其特点是换流器在运行中要从交流系统吸取大量的无功功率。与交换的有功功率成正比,在额定工况时整流装置所需的无功功率约为有功功率的30%~50%,逆变装置约为40%~60%。
常规计算的话,换流器消耗的无功功率可由下式表示:
P为换流器直流侧功率,MW;φ为换流器的功率因数角;μ为换相角;α为整流器触发角。当换流器以逆变方式运行时,式中的α用γ代替,γ为逆变侧关断角。
当然具体工程中,无功配置还涉及各种无功分组方案的比较,感性和容性都要考虑,但一般来说感性无功主要考虑小负荷方式无功过剩情况,很多时候计算出来是不需要配的。
然后就是系统仿真校核工作,就是用电力软件仿真各种工况下稳态和暂态的运行情况,故障方式下的稳定情况。
提供所需无功功率最节省的方法是使用并联电容器组。既然无功随着所传输的直流功率变化,就必须提供可切换的适当容量的电容器组,以便稳态直流电压在各种负荷水平下保持在可接受范围(通常±5%)。如果发电机在直流端附近,则对处理部分无功功率需求和保持稳态电压在可接受范围内是很有用处的。对于弱交流系统,或许有必要以静止无功补偿器(SVC)或静止同步补偿器(STATCOM)提供无功补偿。
3)谐波抑制
换流器在交流侧和直流侧都要产生高次谐波。换流装置对于交流侧是一个谐波电流源,对于直流侧则是一个谐波电压源。交流侧特征谐波举例如下。
在理想工况的运行下,系统存在特征谐波。但是实际直流输电工程的运行工况不可能是理想的,因此还存在非特征谐波。
责任编辑:电朵云