【政策】“新能源汽车”等11个重点专项2018年度项目开始申报

2017-10-11 11:39:50 科技部   点击量: 评论 (0)
近日,科技部发布《关于发布国家重点研发计划新能源汽车等重点专项2018年度项目申报指南的通知》,公布了新能源汽车等11个重点专项2018年度项目申报指南。新能源汽车重点专项2018年度项目申报指南国科发资[2017]

1.3高比能锂/硫电池技术(重大共性关键技术类)
 
研究内容:探索硫电极反应新机制,开发高比容量、长寿命的硫电极材料及适配电解液体系;研究锂枝晶的生长机制及抑制措施,开发兼具高循环库伦效率和良好循环稳定性的锂负极;开展高强度、高安全性功能隔膜的研究;掌握高负载硫电极以及锂/硫电池的设计与制备技术;开展锂/硫电池安全性改善技术的研究,开发高安全、长寿命的锂/硫动力电池,实现装车考核。
 
考核指标:单体电池比能量≥400Wh/kg,循环寿命≥500次(100%DOD),安全性达到国标要求。
 
1.4高比能固态锂电池技术(重大共性关键技术类)
 
研究内容:开展固态聚合物电解质、无机固体电解质的设计及制备技术的研究,开发宽电化学窗口、高室温离子电导率的固态电解质体系;研究活性颗粒与电解质、电极与电解质层的固/固界面构筑技术和稳定化技术,开发固态电极和固态电池的制备技术;开展固态电池的生产工艺及专用装备的研究,开发高安全、长寿命的固态锂电池,实现装车示范。
 
考核指标:室温下,单体电池比能量≥300Wh/kg,循环寿命≥2000次(0.3C以上倍率充放电,100%DOD),安全性达到国标要求,实现装车考核。
 
1.5动力电池测试与评价技术(重大共性关键技术类)
 
研究内容:研究动力电池关键材料和单体的性能评测方法,构建“材料-电池-性能”闭环联动评价机制;研究电池在全生命周期内电性能、安全性能的演化规律,建立仿真分析技术;开展管理系统的功能评价和性能表征方法的研究,开发软硬件测试设备或装置;研究电池系统的性能评测方法及面向实际工况的可靠性、热安全和功能安全等评价方法,开展电池热失控和热扩散的致灾分析,研究动力电池安全等级分类标准;开展国内外动力电池系统的对标分析,建立动力电池权威测试评价平台和数据库。
 
考核指标:建立动力电池的全面评价体系,包括从材料到系统的电性能测试方法,单体电池在全生命周期的安全性表征方法,管理系统的功能与性能评测方法,动力电池系统面向实际工况的可靠性、热安全与功能安全等评估方法;建立具有国际先进水平的动力电池测试评价平台;在测试评价和动力电池安全等级分类方面形成10项以上标准提案;建立产品数据库,其中电池系统样本数不少于200个。
 
2.电机驱动与电力电子
 
2.1商用车高可靠性车载电力电子集成系统开发(重大共性关键技术类)
 
研究内容:研究基于功率器件级集成的多变流器拓扑结构和绝缘栅双极型晶体管(IGBT)芯片集成封装技术;研究机-电-热集成设计技术及电磁兼容技术;研究硬件安全冗余、软件容错等系统功能安全技术;研究集成电力电子控制器产品(简称PCU)的可靠性及测试方法。开发出适用于10~12米纯电动、插电式、增程式客车的PCU产品。
 
考核指标:商用车电力电子集成控制器产品比功率≥10.0kVA/kg;控制器最高效率≥98%,效率大于90%的高效区≥80%,集成控制器电磁兼容性能(EMC)(带载)、可靠性和产品设计寿命满足整车要求,PCU产品寿命≥8年(以关键器件寿命设计文件与加速寿命验证测试报告作为验收依据);配套整车产品完成公告,并批量装车。
 
2.2轿车高可靠性车载电力电子集成系统开发(重大共性关键技术类)
 
研究内容:研究基于功率器件级集成的多变流器拓扑结构,开发机-电-热集成设计技术及电磁兼容技术;研发芯片集成封装技术及硬件安全冗余、软件容错等系统功能安全技术;研究集成电力电子控制器产品(简称PCU)的可靠性、寿命设计及测试方法。开发出适用于A级、B级插电式/增程式混合动力乘用车的PCU产品。
 
考核指标:PCU产品设计安全等级达到或超过ISO26262ASIL-C等级;PCU产品设计寿命不少于10年(以关键器件寿命设计文件与加速寿命验证测试报告作为验收依据);功率密度≥15.0kVA/L(对于插电式、增程式混合动力车型按驱动电机控制器和发电机控制器峰值功率之和计算);控制器最高效率≥98%,效率大于90%的高效区≥80%,集成控制器EMC(带载)、可靠性和产品设计寿命满足整车要求,配套整车产品完成公告,并批量装车。
 
2.3基于碳化硅技术的车用电机驱动系统技术开发(重大共性关键技术类)
 
研究内容:攻克低感高密度碳化硅模块封装、高温高频电容器设计与封装技术难关;研究碳化硅变流器高功率密度,高频化永磁电机设计与工艺,电机驱动系统高效控制技术,噪声、振动、平顺性(NVH)和EMC等技术;研究碳化硅控制器与驱动电机一体化集成技术;研究碳化硅电机驱动系统的全寿命周期成本评价方法;开发出车用大电流碳化硅模块、车用高温高频大电流电容、全碳化硅电机控制器以及整个电机驱动系统。
 
考核指标:电力电子模块电流≥400A,电压≥750V;电容器容积比≥1.4uF/mL;碳化硅电机控制器功率密度≥30kW/L,最高效率≥98.5%,超过90%的高效区≥90%;电机峰值功率密度≥4.0kW/kg(30秒),连续比功率≥2.5kW/kg;电机最高效率≥96.5%,电机及其控制系统最高效率≥94.5%,超过85%的高效率区不低于85%;实现装车应用不低于10辆。提供2项相关的环境适应性和安全性评价国家(或行业)标准(或国际标准提案)草案。
 
2.4高效轻量化轮毂电动轮总成开发(重大共性关键技术类)
 
研究内容:突破电动轮集成技术,包括研发电动轮总成的电、磁、热以及整车结构应用等多领域协同仿真技术,突破电动轮液冷结构与动密封、低转矩脉动和NVH、抗振能力和可靠耐久性技术。开发出高效轻量化电动轮总成。
 
考核指标:满足A级和A0级纯电动轿车应用的电动轮总成(轮毂电机本体或轮内电机与减速器的总成)峰值功率密度≥2.5kW/kg(≥30秒),峰值转矩密度≥18Nm/kg,连续比功率≥1.8kW/kg,最高效率≥94%,噪声≤75dB(A)。实现小批量装车不低于10辆。
 
2.5一体化驱动电机系统研制(重大共性关键技术类)
 
研究内容:突破高速减速器设计、齿轮加工与研磨、轴类精密加工、铸造壳体技术难关;研究高速驱动电机与减速器结构集成、润滑与冷却系统、NVH技术;掌握电驱动总成批量制造生产工艺与高效检测等产业化技术;开发出新一代高性能电驱动总成产品。
 
考核指标:驱动电机及高速减速器的最高转速≥15000转/分,电驱动总成匹配额定功率40-80kW,比功率≥1.8kW/kg(峰值功率/总重量),最高效率≥92%,电驱动总成噪声≤80dB(A),具备电子驻车功能,实现批量装车不低于100台套。
 
3.电动汽车智能化
 
3.1自动驾驶电动汽车环境感知技术(重大共性关键技术类)
 
研究内容:研究基于多传感器融合的车辆360°无盲区环境感知系统;突破环视高速旋转扫描的宽视场探测技术、固态化车载激光雷达技术、厘米级实时测距关键技术;设计高速实时通信信息处理与通信模块;设计适用于大数据实时、高效传输的数据打包与传输协议;研究开发基于点云数据的多目标识别及跟踪算法。
 
考核指标:实现车辆周边0.1米-150米范围的无盲区环境感知,激光雷达垂直视角≥30度,水平角分辨率≤0.05度,垂直角度分辨率≤1度,测距精度≤2厘米。环境感知系统目标识别算法能对道路常见目标(车辆、行人、非机动车、车道线、车位、路侧静止障碍物等)进行检测和分类,单一目标的检测准确率≥97%,多目标分类准确率≥95%,对目标跟踪的动态响应速度低于200毫秒,小批量生产。
 
3.2自动驾驶电动汽车测试与评价技术(重大共性关键技术类)
 
研究内容:构建自动驾驶电动汽车测试场景数据库;建立自动驾驶电动汽车信息安全、功能安全、环境感知系统、决策规划系统、控制执行系统等系统级和整车级的测试评价方法;研究基于硬件在环仿真的模拟试验方法及场地试验方法;研究涵盖环境复杂度、任务复杂度、人工干预度和驾驶智能度等评价指标的自动驾驶电动汽车评价理论及体系。
 
考核指标:自动驾驶电动汽车测试场景数据库至少覆盖中国典型道路环境、典型道路类型、典型天气及光照条件、典型交通流环境等;建立覆盖环境感知系统、决策规划系统、控制执行系统的系统级测试试验系统;建设实现自动驾驶电动汽车性能测试和功能测试的封闭测试环境,能够复现典型的城区、郊区道路场景,并设置高精度定位基站、车辆与外界信息交互技术(V2X)路侧通信设备等基础设施,可实现自动驾驶电动汽车在实际交通状态下的实证测试;形成不少于6项国家测试标准/规范草案。
大云网官方微信售电那点事儿

责任编辑:lixin

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞