BMW公司:模型化设计工具提升锂离子电池设计效率

2018-08-20 16:37:36 新能源Leader  点击量: 评论 (0)
作为电动汽车的核心系统,锂离子电池技术的发展对于电动汽车具有举足轻重的影响,更高的比能量意味着更长的续航里程,更大的充电电流意味着更短的充电时间,但是实际上两者往往无法兼得。

对于正负极存在这样的临界点,对于全电池也存在同样的临界点,通常我们认为当电池的放电容量低于C/10容量的80%时,这个电流密度就是电池的临界点,此时锂离子电池内部就开始存在Li+扩散限制。从下图中能够注意到,当电极的涂布厚度越大,则临界电流也就越低,这表明Li+的扩散过程成为了锂离子电池倍率性能的重要影响因素之一。

640.webp (4).jpg

不同厚度电极的电池的临界电流密度的不同也会对锂离子电池的循环性能产生影响,下面是采用不同电极厚度的电池的循环性能曲线,首先电池在C/3充放倍率下循环到285次,然后在1C充电/C/3放电倍率下循环到548次,然后在以1.5C充电/C/3放电的倍率继续循环。从测试结果来看,在前285次循环中所有电池的容量保持率都达到96%以上。随着将电池的充电倍率提高到1C,我们发现电极厚度较大的几种电池(4.4、5.5和6.6mAh/cm2)衰降速度明显加快,而涂布量较低的两种电极(2.2和3.3mAh/cm2)电极衰降速度则没有出现明显的加快。但是作者发现3.3mAh/cm2的电池中有两只发生了明显的衰降,两只则没有明显的衰降,这表明1C的充电电流已经达到3.3mAh/cm2电极的临界电流密度,当继续把充电电流提高到1.5C倍率,则3.3mAh/cm2的电极也发生了明显的衰降,而涂布量最低的2.2mAh/cm2的电池仅仅是发生了轻微的衰降现象。作者认为这主要是充电电流超过了临界电流后,引发了负极析锂,从而引起了电池可逆容量的严重衰降。

640.webp (5).jpg

对循环寿命末期的电池解剖结果也支持了上面的推测,负极表面观察到了大量的金属锂的析出现象,性能较好的2.2mAh/cm2的负极只有少量的锂析出,而涂布量较大的4.4mAh/cm2的负极表面则析出了大量的银白色的金属锂。

640.webp (6).jpg

根据模型仿真和试验测试结果绘制了下面的锂离子电池充电电流与最大涂布量之间的关系,其中有两条曲线,其中g=0.6是标准值,而g=0.3为保守值,在当电极的涂布量在曲线的左下方时表明负极没有达到临界电流,不会发生析锂,而在曲线的右上方则会导致负极析锂,引起锂离子电池可逆容量的快速衰降。

640.webp (7).jpg

BMW公司与美国阿贡国家实验室开发的这套锂离子电池模型能够用来预测不同厚度电极的临界电流,当充电电流超过临界电流时,就会因为负极析锂导致电池的可逆容量极速衰降。因此对于特定厚度的电极我们能够根据该模型设计合适的充电电流,对于特定的充电电流,我们能够根据模型选择合适的电极厚度,从而保证锂离子电池的循环寿命。通过使用该模型,能够大大简化锂离子电池设计师的工作,提高设计效率,降低研发成本,模型化的设计工具在锂离子电池设计中具有广阔的应用前景。

大云网官方微信售电那点事儿

责任编辑:继电保护

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞