保护信息管理在地铁交流供电系统中的应用研究
南京南瑞继保电气有限公司的研究人员金海奇,在2018年第4期《电气技术》杂志上撰文指出,继电保护是地铁供电系统安全运行的保障,其定值与负荷大小和变动紧密相关,欲确保多定值的继电保护整定准确,必须为地铁供电系统配备完善的保护信息管理系统,以加强对保护定值的整定、检测与管理。
本文中以城市轨道交通供电系统结构和运行方式为基础,设计一套具有“地铁供电”特色的保护信息管理系统,以实现定值自动校核、危险预警、合理化整定建议、故障波形管理等功能。系统采用顶层设计、模块化实施的思想,并突出了地铁供电的特殊性和专业性。最后,利用典型的实例阐释了基于RTDS仿真实验平台的校验功能。
继电保护装置是保证地铁供电系统安全运行的关键二次设备,而保护定值又是继电保护装置正确动作的基础,因此合理整定、检测和管理保护定值对保障地铁供电系统的安全具有重要意义[1-3]。
保护跳闸时的故障波形是分析故障原因和确定故障性质的重要基础,也应该纳入有效管理。
目前城市轨道交通继电保护装置的定值整定是由设计单位在离线状态下根据已有系统最大负荷电流和系统阻抗参数计算获得的,并由调试单位输入保护装置并进行实验测试[4]。但是根据实际应用的反馈,这种定值整定和管理模式出现如下问题需要改进提高。
1)定值整定标准不同导致的上下级配合问题。地铁供电系统中主变电所定值一般由电力调度整定,而牵引降压变电所定值一般由铁路专业设计院整定,在两类变电所的设计接口处由于双方整定计算方法和标准的差异,常发生上下级保护配合方面的问题。
2)地铁35kV供电系统整定调试时难以充分验证保护配合关系。受牵引降压变电所地理位置上的分散和调试手段的限制,调试单位调试继电保护装置时常常仅测试站内和邻站间的保护配合关系,对于更复杂的跨越多个变电站的保护配合则难以测试,留下了测试盲点。
3)地铁供电系统运行方式变化多样,而运行方式切换后,如果保护装置的定值组没有同步切换,将导致运行定值与当前运行方式的不匹配,存在保护误动和拒动的可能性。
4)特殊运行状态时,存在整定方法不完善之处或者整定计算过程中的人为疏漏,系统中部分保护定值可能不能满足故障切除灵敏性和选择性的要求。
5)保护动作后,保护装置会记录故障波形,但是目前地铁没有相应的保信系统来管理和查阅波形,检修人员必须赶到现场才能确定故障原因,导致恢复供电周期很长。
若能够将电力系统中已经普遍应用的保护信息管理系统与地铁应用条件相结合,研制一套“地铁保护信息管理系统”,以快速发现和定位上述问题盲点,则将有利于地铁供电系统的安全运行能力的进一步提升,具有一定的实用意义。
1 地铁应用的特殊性
“继电保护定值在线校核”技术在电力系统已经得到了相关专业技术人员的广泛研究[1,4-6],但是通过研究和比较发现,现有成果和技术方案并不完全适合地铁供电系统的实际情况,因此无法直接移植应用。这些差异性主要表现在以下方面。
1)目前电力系统内的继电保护定值在线校核技术是针对电网结构设计的,校核系统通过能量管理系统(energy management system, EMS)采集电力系统的实时运行数据(运行方式、拓扑结构、保护定值等)。而地铁供电系统内并不设置EMS,更不会提供符合IEC61970标准的公共信息模型[5]以便在线校核系统采集数据。
2)电力系统的拓扑结构为多电源网络,在线校核定值时需要进行潮流计算、分布式处理等[7],而地铁供电系统为单电源系统,不需要考虑潮流等因素,校核算法上相对简化。而地铁供电系统运行模式复杂,因此要求在线校核系统必须在运行模式切换方面具有针对性的解决措施。
3)地铁负荷具有冲击性的特点,铁路专业设计院通常根据仿真计算得到的最大负荷电流整定继电保护装置,而传统电力在线校核方法通常采用短路计算进行定值校核,如果在地铁供电系统中延用电力的在线校核方法,由于整定方法和校核方法之间存在着较大的差异,将不能实现校核目标。
因此,为了研制地铁保护信息管理系统,必须充分考虑以上差异,在现有电力“继电保护定值在线校核”技术的基础上进行重新设计。
2 系统的结构
地铁保护信息管理系统由“保信子站”和“保信主站”组成,其中子站负责保护信息数据的收集,主站负责保护信息数据的管理和分析。保信主站中,保护管理计算机为用户接口设备,用于配置在线校核系统和读取校核报告;在线校核服务器用于存储校核数据库和执行校核算法;交换机和前置服务器用于读取保护定值、故障波形和核心断路器状态。系统结构如图1所示。
图1 地铁保护信息管理系统结构图
核心断路器包括环网联络断路器、主变电所和牵引降压变电所的馈线断路器、母联断路器等。由于核心断路器的变位会导致地铁供电系统运行模式的切换,所以必须实时监控其位置信息,以便于及时识别供电系统的模式切换。定值信息包括保护装置内的所有运行定值和备用定值。读取的定值信息存储在定值数据库中,供在线校核系统调用。
3 系统功能
地铁保护信息管理系统的功能图如图2所示。
图2 地铁保护信息管理系统功能图
地铁保护信息管理系统支持3种校核算法(规则库校核算法、定值库校核算法和在线整定计算校核算法),同时在内部设置了5个专用数据库为校核算法提供运算支持。
这些数据库除了定值数据库外,还包括系统基本参数数据库(存储电缆单位阻抗、变压器参数等供电系统参数)、设计定值库(存储设计院提供的设计整定定值清单)、定值校核规则库(存储如保护配合延时级差等定值校核规则)和系统拓扑结构数据库(电气一次系统的组网结构和断路器编号)。
定值数据库的数据从PSCADA系统读取,其他数据库的数据都需要通过“图形化用户配置接口”模块进行设置。
在线校核系统还设置了“运行模式识别”功能模块和“短路计算”功能模块。运行模式识别模块实时监视核心断路器的变位信息以判断系统的当前运行模式;短路计算模块根据系统参数和假设条件计算各类型短路故障情况下的短路电流。
3.1 定值库校核模式
定值库校核模式通过比较“设计定值数据库”和“定值数据库”来核对保护装置内的运行定值是否为设计定值。该模式主要用于筛查因人为整定失误导致的错误隐患[8]。
校核算法执行时,利用实时采集的核心断路器位置信息,由“运行模式识别”功能模块判别系统当前的运行模式。定值库校核模块再根据运行模式从设计定值数据库中读取该运行模式对应的设计定值组。此后,校核模块比较定值数据库中每一个装置内的运行定值与设计定值是否相同,并生成分析报告。若存在差异,则产生告警信息,提醒运行人员:当前运行定值存在整定错误。
定值库校核功能支持周期触发、事件触发和手动触发共3种触发模式。周期触发用于定期检查系统保护定值,周期定值由运行人员设置,可作为一种自动化巡检手段为保护装置“运维”提供便利;事件触发用于运行模式切换后对系统保护定值进行即时检查,避免出现因保护定值未随运行模式切换而导致的安全隐患;手动触发则由运行人员根据需要决定是否执行校核算法。
3.2 整定计算校核模式
目前关于在线定值校核系统有静态分析和动态分析两类方法。动态分析方法考虑了潮流计算、状态突变、负荷模型、电源参数等更丰富的数据,能够比静态方法提供更详细、更准确的信息,因此成为电力系统在线校核的主流[5]。但是对于地铁供电系统,由于潮流数据影响极小、电源参数也变化不大,因此动态分析方法相比于静态分析方法的优势并不明显。本论文选用静态分析方法来计算和校核保护定值。
地铁负荷具有冲击性的特点,地铁继电保护定值通常根据仿真计算得到的最大负荷电流整定,整定计算校核模式的作用就是验证设计定值的灵敏度。“短路计算”功能模块以“系统基本参数库”中的电气参数为基础,结合运行模式识别结果,采用静态网络阻抗分析方法计算单相接地、两相接地、相间短路不接地和三相短路时各个故障点(母线、站间环网电缆、整流/动力变压器高低压侧)的短路数据,并将计算结果提交给整定计算校核模块。
整定计算定值校核模块主要校核在当前系统方式下保护所在区域发生内部故障时,当前保护定值的“灵敏度”。
保护灵敏度的计算公式[2]为
(1)
式中,Km为灵敏度;Idz为待校验保护定值;Icur为保护区域内发生不同类型接地故障时流过保护的最大短路电流。由于地
责任编辑:售电衡衡
-
权威发布 | 新能源汽车产业顶层设计落地:鼓励“光储充放”,有序推进氢燃料供给体系建设
2020-11-03新能源,汽车,产业,设计 -
中国自主研制的“人造太阳”重力支撑设备正式启运
2020-09-14核聚变,ITER,核电 -
探索 | 既耗能又可供能的数据中心 打造融合型综合能源系统
2020-06-16综合能源服务,新能源消纳,能源互联网
-
新基建助推 数据中心建设将迎爆发期
2020-06-16数据中心,能源互联网,电力新基建 -
泛在电力物联网建设下看电网企业数据变现之路
2019-11-12泛在电力物联网 -
泛在电力物联网建设典型实践案例
2019-10-15泛在电力物联网案例
-
权威发布 | 新能源汽车产业顶层设计落地:鼓励“光储充放”,有序推进氢燃料供给体系建设
2020-11-03新能源,汽车,产业,设计 -
中国自主研制的“人造太阳”重力支撑设备正式启运
2020-09-14核聚变,ITER,核电 -
能源革命和电改政策红利将长期助力储能行业发展
-
探索 | 既耗能又可供能的数据中心 打造融合型综合能源系统
2020-06-16综合能源服务,新能源消纳,能源互联网 -
5G新基建助力智能电网发展
2020-06-125G,智能电网,配电网 -
从智能电网到智能城市