融冰绝缘地线对变电站雷电过电压的影响
3.2 避雷器配置的影响
结合前面的研究发现,变电站设备最大过电压出现在雷击第1基杆塔时,其最大过电压已经超过变压器绝缘裕度。因此考虑在母线上安装一组避雷器,研究其对变压器过电压的影响效果。在融冰绝缘地线改造后,雷击第1基杆塔,变电站设备过电压如图4所示,其中电气设备过电压的最大值如表3所示。由表3和图4可见,未架设避雷器前,变压器最大过电压为1 675 kV;架设避雷器后,变压器最大过电压下降为1 530 kV,小于其绝缘裕度,达到了保护变压器的效果。同时,变电站其他设备过电压也有下降,达到保护变电站设备的效果,并且效果比较显著。
图 4 地线绝缘架设情况下雷击杆塔电气设备过电压
Fig. 4 Overvoltage of electrical equipment for tower struck by lightning in way of insulated ground wire
3.3 杆塔接地电阻的影响
为了分析杆塔接地电阻对变电站电气设备的雷电过电压水平的影响,在仿真时杆塔接地电阻范围为5~30 Ω,雷击点位于第1基杆塔,得到不同接地电阻下电气设备最大过电压随接地电阻变化的趋势如图5所示。由图5可见,在接地电阻为5 Ω,变压器最大过电压为1 663 kV;在接地电阻为30 Ω,变压器最大过电压为1 719 kV;随着杆塔接地电阻增大,设备最大过电压值增大。雷击地线正常架设和绝缘架设下设备最大过电压随接地电阻变化规律相似。因此,接地电阻的减小将会导致变电站设备最大过电压减小。尽量减小变电站附近杆塔的接地电阻,对限制过电压水平和节约成本有重大的意义。
表 3 地线绝缘架设情况下雷击杆塔电气设备最大过电压
Table 3 Largest overvoltage of electrical equipment for tower struck by lightning in way of insulated ground wire
图 5 电气设备最大过电压随接地电阻变化的趋势图
Fig. 5 Largest overvoltage of electrical equipment with grounding resistance
4 结论
本文利用ATP-EMTP 软件建立500 kV变电站雷电过电压分析模型,研究了融冰绝缘地线架设对500 kV变电站雷电过电压的影响,总结雷击点位置、避雷器配置方案和杆塔接地电阻对变电站设备雷电过电压的影响规律,得出如下结论。
(1)雷击变电站附近杆塔,地线正常架设和绝缘架设2种情况下变电站设备最大过电压差别很小,融冰绝缘地线架设对500 kV变电站雷电过电压的影响很小。
(2)随着雷击点远离变电站,地线正常架设和绝缘架设2种情况下变电站最大过电压都减少,且变化规律相似。
(3)母线架设避雷器后,变压器最大过电压下降到安全裕度以内,同时对其他变电站设备也起到了保护作用。
(4)变电站附近杆塔接地电阻对变电站设备最大过电压影响较大。减小杆塔接地电阻,对限制变电站设备过电压水平有着重要的作用。
融冰绝缘地线采用120 mm的长间隙,对500 kV变电站设备最大过电压影响很小,可在地线直流融冰工程中推广应用。
作者:
马御棠 , 马仪 , 曹晓斌 , 黄然 , 陈奎 , 周仿荣
参考文献
[1]王海姣, 刘明光, 李宗垒. 变电站进线段应用避雷针保护的优势[J]. 高压电器, 2014, 50(2): 68-74.
WANG Haijiao, LIU Mingguang, LI Zonglei. Adopting lightning rod for protecting incoming line of transformer substation[J]. High Voltage Apparatus, 2014, 50(2): 68-74. (1)
[2]胡伟, 陈勇, 万启发, 等. 三峡550 kV GIS 的雷电冲击耐受试验方法[J]. 高电压技术, 2011, 37(4): 883-887.
HU Wei, CHEN Yong, WAN Qifa, et al. Test on lighting impulse withstand voltage of the three gorges right bank 550 kV GIS substation[J]. High Voltage Engineering, 2011, 37(4): 883-887. (0)
[3]刘强, 谷定燮, 张元芳. 雷击杆塔塔顶时导线上感应电压敏感性分析[J]. 高电压技术, 2005, 31(3): 31-33.
LIU Qiang, GU Dingxie, ZHANG Yuanfang. Sensitivity analysis of lightning performance calculations for transmission lines[J]. High Voltage Engineering, 2005, 31(3): 31-33. (1)
[4]胡伟涛. 500 kV HGIS 雷电冲击试验击穿的原因分析[J]. 高压电器, 2013, 49(12): 145-149.
HU Weitao. Breakdown Analysis of a 500 kV HGIS equipment in lightning impulse test[J]. High Voltage Apparatus, 2013, 49(12): 145-149. (1)
[5]刘青, 张玉峰, 程勇. 220 kV GIS 变电站雷电过电压防护措施的研究[J]. 高压电器, 2008, 44(4): 329-331.
LIU Qing, ZHANG Yufeng, CHENG Yong. Research on protection against lightning over-voltage on transformer in a 220 kV GIS substation[J]. High Voltage Apparatus, 2008, 44(4): 329-331. (0)
[6]匡洪海, 肖伸平. 500 kV 变电站雷击保护的建模分析J][J]. 高压电器, 2008, 44(5): 409-412.
KUANG Honghai, XIAO Shenping. Modeling and analysis of lightning protection for 500 kV substation[J]. High Voltage Apparatus, 2008, 44(5): 409-412. (0)
[7]陈仕龙, 曹蕊蕊, 毕贵红, 等. 基于形态学的特高压直流输电线路雷击干扰识别[J]. 中国电力, 2014, 47(10): 40-46.
CHEN Shilong, CAO Ruirui, BI Guihong, et al. Identification of UHVDC transmission line lightning disturbance based on morphology[J]. Electric Power, 2014, 47(10): 40-46. (0)
[8]董家斌. 500 kV主变压器雷击事故分析[J]. 中国电力, 2014, 47(5): 6-10.
DONG Jiabin. Analysis of lightning outage for 500 kV main transformer[J]. Electric Power, 2014, 47(5): 6-10. (0)
[9]王成亮, 王光亮, 包玉树. 一起变压器雷击故障的分析[J]. 中国电力, 2012, 45(12): 66-70.
WANG Chengliang, WANG Guangliang, BAO Yushu. Analysis on a transformer lightning accident[J]. Electric Power, 2012, 45(12): 66-70. DOI:10.3969/j.issn.1004-9649.2012.12.015 (1)
[10]张恒旭, 刘玉田, 张鹏飞. 极端冰雪灾害下电网安全评估需求分析与框架设计[J]. 中国电机工程学报, 2009, 29(16): 8-14.
ZHANG Hengxu, LIU Yutian, ZHANG Pengfei. Requirements analysis and framework design for power system security assessment considering extreme ice disasters[J]. Proceedings of the CSEE, 2009, 29(16): 8-14. DOI:10.3321/j.issn:0258-8013.2009.16.002 (1)
[11]黄新波, 刘家兵, 蔡伟, 等. 电力架空线路覆冰雪的国内外研究现状[J]. 电网技术, 2008, 32(4): 23-28.
HUANG Xinbo, LIU Jiabing, CAI Wei, et al. Present research situation of icing and snowing of overhead transmission lines in China and foreign ries[J]. Power System Technology, 2008, 32(4): 23-28. (1)
[12]胡毅. 电网大面积冰灾分析及对策探讨[J]. 高电压技术, 2008, 34(2): 215-219.
HU Yi. Analysis and ermeasures discussion for large area icing accident on power grid[J]. High Voltage Engineering, 2008, 34(2): 215-219. (1)
[13]侯慧, 尹项根, 陈庆前, 等. 南方部分500 kV主网架2008年冰雪灾害中受损分析与思考[J]. 电力系统自动化, 2008, 32(11): 12-15.
HOU Hui, YIN Xianggen, CHEN Qingqian, et al. Review on the wide area blackout of 500 kV main power grid in some areas of south China in 2008 snow disaster[J]. Automation of Electric Power Systems, 2008, 32(11): 12-15. DOI:10.3321/j.issn:1000-1026.2008.11.003 (1)
[14]吴伯华, 张孝军, 方瑜. 超高压线路绝缘地线的研究[J]. 中国电力, 1997, 30(3): 11-12.
WU Bohua, ZHANG Xiaojun, FANG Yu. Study on the performance of insulated ground wire on EHV transmission lines[J]. Electric Power, 1997, 30(3): 11-12. (1)
[15]刘青. 宝能220 kV GIS 变电站雷电侵入波过电压的研究[J]. 高压电器, 2008, 44(2): 142-144.
LIU Qing. Research on lightning intruding waves in 220 kV Baoneng gas insulated substation[J]. High Voltage Apparatus, 2008, 44(2): 142-144. (1)
[16]甘凌霞. 500 kV GIS 变电站雷电过电压保护研究[J]. 高压电器, 2009, 45(6): 110-114.
GAN Lingxia. Lightning over-voltage protection for 500 kV GIS substation[J]. High Voltage Apparatus, 2009, 45(6): 110-114. (0)
[17]向军, 周羽生, 郑剑武, 等. 1000 kV 交流紧凑型输电变电站雷击侵入波分析[J]. 电瓷避雷器, 2012(3): 67-76.
XIANG Jun, ZHOU Yusheng, ZHENG Jianwu, et al. Analysis on lightning invasion waves of 1000 kV AC compact transmission substation[J]. Insulators and Surge Arresters, 2012(3): 67-76. (0)
[18]袁兆祥, 周洪伟. 500 kV HGIS 变电站雷电侵入波的计算分析[J]. 高电压技术, 2007, 33(6): 71-75.
YUAN Zhaoxiang, ZHOU Hongwei. Calculation and study of lightning intruding surge for 500 kV HGIS substation[J]. High Voltage Technology, 2007, 33(6): 71-75. (0)
[19]刘渝根, 刘纬, 陈先禄. 500 kV 变电站雷电侵入波研究[J]. 重庆大学学报(自然科学版), 2000, 23(3): 17-19.
LIU Yugen, LIU Wei, CHEN Xianlu. Research on lightning intruded wave for 500 kV substations[J]. Journal of Chongqing University (Natural Science Edition), 2000, 23(3): 17-19. (1)
[20]陈奎, 曹晓斌, 吴广宁, 等. 超高压输电线路融冰绝缘地线单相短路电流分析[J]. 电网技术, 2014, 38(11): 3266-3270.
CHEN Kui, CAO Xiaobin, WU Guangning, et al. Analysis on single-phase short-circuit current in insulated ground wire during ice-melting of EHVAC transmission lines[J]. Power System Technology, 2014, 38(11): 3266-3270. (1)
[21]相龙阳, 彭春华, 刘刚. 500 kV变电站雷电过电压的仿真研究[J]. 电力科学与工程, 2011, 27(2): 30-35.
XIANG Longyang, PENG Chunhua, LIU Gang. Simulation research on lightning over voltage of 500 kV substation[J]. Electric Power Science and Engineering, 2011, 27(2): 30-35. (3)
[22]彭鹏, 粟时平, 颜勤. 变电站雷电侵入波保护的仿真分析[J]. 电力科学与技术学报, 2009, 24(3): 49-53.
PENG Peng, LI Shiping, YAN Qin. Simulation and analysis for substations lightning intruded wave protection[J]. Journal of Electric Power Science and Technology, 2009, 24(3): 49-53. (1)
[23]陈梁金, 李文艺, 施围. 750 kV GIL-GIS 系统雷电侵入波防护的研究[J]. 高电压技术, 2005, 31(6): 39-41.
CHEN Liangjin, LI Wenyi, SHI Wei. Study on the protection of lightning intruding waves in 750 kV GIL-GIS system[J]. High Voltage Engineering, 2005, 31(6): 39-41. (2)

责任编辑:电朵云
-
权威发布 | 新能源汽车产业顶层设计落地:鼓励“光储充放”,有序推进氢燃料供给体系建设
2020-11-03新能源,汽车,产业,设计 -
中国自主研制的“人造太阳”重力支撑设备正式启运
2020-09-14核聚变,ITER,核电 -
探索 | 既耗能又可供能的数据中心 打造融合型综合能源系统
2020-06-16综合能源服务,新能源消纳,能源互联网
-
新基建助推 数据中心建设将迎爆发期
2020-06-16数据中心,能源互联网,电力新基建 -
泛在电力物联网建设下看电网企业数据变现之路
2019-11-12泛在电力物联网 -
泛在电力物联网建设典型实践案例
2019-10-15泛在电力物联网案例
-
权威发布 | 新能源汽车产业顶层设计落地:鼓励“光储充放”,有序推进氢燃料供给体系建设
2020-11-03新能源,汽车,产业,设计 -
中国自主研制的“人造太阳”重力支撑设备正式启运
2020-09-14核聚变,ITER,核电 -
能源革命和电改政策红利将长期助力储能行业发展
-
探索 | 既耗能又可供能的数据中心 打造融合型综合能源系统
2020-06-16综合能源服务,新能源消纳,能源互联网 -
5G新基建助力智能电网发展
2020-06-125G,智能电网,配电网 -
从智能电网到智能城市