发明专利|适用于孤岛和并网模式的微电网功率变换系统

2017-10-20 13:17:19 北极星智能电网在线整理   点击量: 评论 (0)
编者按:本发明公开了一种适用于孤岛和并网模式的微电网功率变换系统,包括直流电源电路、电容串联电路、变压器、第一开关管桥臂、第二开关管桥臂、控制电路和三相逆变器电路;电容串联电路的C1和C2中间连接点分别

将变压器变比设为1,得到:
 
 
由(5)、(6)、(7)式得到:
 
 
上电容C1电压与下电容C2电压之差为二极管D1的导通压降与开关管T4导通压降之和;下电容C2在该工作状态中不断放出能量,能量被N2线圈吸收后传递给N1线圈,然后由N1线圈通过二极管D1不断向上电容C1充电;这个过程中,C2放电,C1充电, 不断减小, 不断增加,二者电压差减少;
 
(4)所述④ 状态为③ 状态的续流阶段,该状态下,开关管T1、T2、T3、T4关断,该状态下电流流向如图5所示。电流从N2线圈的非同名端流出,经过与开关管T3反并联的二极管D3、上电容C1后流回N2线圈的同名端,该电流不断减小,直到为0。
 
(二)当上电容C1上的电容电压 大于下电容C2上的电容电压 时,开关管T1和T3轮流导通,变压器N1线圈和N2线圈交替作为变压器原边,把上电容C1的能量传递到下电容C2上,实现两个电容电压的均衡;此模式下开关管T2和T4一直保持断开状态;
 
此时微电网功率变换系统的工作状态依次为:(1)T1导通,T2、T3、T4关断;(2)T1、T2、T3、T4关断;(3)T3导通,T1、T2、T4关断;(4)T1、T2、T3、T4关断;将这四种工作状态分别命名为⑤状态,⑥ 状态,⑦ 状态和⑧ 状态;
 
(1)⑤ 状态时,开关管T1导通,T2、T3、T4关断,电路中的电流方向如图6所示。电流从
 
上电容C1的正端流出,经过开关管T1、N1线圈后流回上电容C1的负端;根据基尔霍夫方程得到:
 
 
公式中为N1线圈两端的电压,为开关管T1的导通压降;
 
与此同时,在变压器的N2线圈产生电流回路,电流从N2线圈的同名端流出,经过下
 
电容C2、与开关管T4反并联的二极管D4后回到N2线圈的非同名端;此时:
 
 

 
 为N2线圈两端的电压,为二极管D4的导通压降;
 
 变压器变比设为1,得到:
 
 
结合公式(9)、(10)、(11),得到:
 
 
上电容C1的电压值与下电容C2的电压值之差为开关管T1的导通压降与二极管D4的导通压降之和;上电容C1在该工作状态中不断放出能量,能量被N1线圈吸收后传递给N2线圈,然后由N2线圈通过二极管D4不断向下电容C2充电;在这个过程中,上电容C1放电,下电容C2充电, 不断减小, 不断增加,二者电压差减少;
 
(2)⑤ 状态后是⑥ 状态,该状态下电流所有开关管全部关断,该阶段为⑤ 状态的续
 
流阶段,电路中的电流方向如图7所示。电流从N1线圈的非同名端流出,经过下电容C2、二极管D2后流回绕组N1线圈的同名端,该电流大小不断减小,最终为0;
 
(3)⑦ 状态在⑥ 状态的续流完成后开始,该状态下开关管T3导通,T1,T2,T4关断,电路中的电流方向如图8所示。电流从上电容C1正端流出,经过开关管T3、N2线圈后流回上电容C1的负端,此时:
 
 
变压器副边N1线圈产生电流回路,电流从N1线圈的非同名端流出,经过下电容C2、与开关管T2反并联的二极管D2后流回N1线圈的同名端,此时:
 
 
将变压器变比设为1,则
 
 
根据公式(13)、(14)、(15)得到:
 
 
上电容C1在该工作状态中不断放出能量,能量被N2线圈吸收后传递给N1线圈,然后由N1线圈通过二极管D2不断向下电容C2充电;在此过程中,上电容C1放电,下电容C2充电,不断减小, 不断增加,二者电压差减少;
 
(4)⑦ 状态后紧接着是⑧ 状态,该状态下T1、T2、T3、T4关断;该状态为⑦ 状态的续流阶段,电路中的电流方向如图9所示。电流从N2线圈的同名端流出,经过下电容C2、二极管D4后流回到N2线圈的非同名端,该回路的电流不断减小,直到为0。
 
经过对以上两种中性点电压的波动情况进行分析可知,上下电容的电压差被限制在一个开关管和一个二极管的导通压降之和以内,该电路拓扑能够有效降低上下电容的电压差。
 
本发明的网络拓扑结构增加了四个开关管,由电路的模态分析,通过变压器的绕组交替作为原边绕组,最终设计的控制电路如图10所示。所述驱动信号生成模块包括减法运算单元,绝对值运算单元、限幅单元、三角波载波信号发生单元、多个比较器、数字逻辑运算单元、0V电压给定单元;
 
电压传感器检测到的电容C2两端的电压和直流电源电路的中性点电压分别输入减法运算单元;减法运算单元的一路输出信号依次通过绝对值运算单元和限幅单元后作为比较器A的一路输入信号,比较器A的另一路输入信号为三角载波信号发声单元产生的三角载波信号;
 
减法运算器的另一路输出信号和0V电压给定单元给定的0V电压分别输入比较器B;
 
比较器A和比较器B的输出信号分别输入数字逻辑运算单元,数字逻辑运算单元生成的控制信号G1、G2、G3和G4分别与开关管T1、T2、T3、T4的栅极相连接。
 
图10中,VC2指的是下电容C2的电压值,反映中性点对负直流母线端的电压值;Vref指的是直流母线电压的一半即中性点电压的给定值。而0V电压的给定与偏差信号进行比较,是为了判断中性点电压的漂移方向,也是为了判断上下电容电压的大小关系。数字逻辑运算模块的功能是对各个信号的综合,从而得到四个开关管T1、T2、T3、T4的栅极控制信号。
 
中性点电压与给定进行减法运算,偏差信号经过绝对值运算、限幅之后与三角波载波信号进行比较,得到控制四个开关管开通和关断的原始PWM信号。另一方面,给定信号和反馈采样信号之差作为偏差信号,偏差信号与0V进行比较,比较值作为符号位来判断上下电容电压值的大小关系。符号位来决定两个桥臂的上开关管交替导通还是下开关管交替导通,比如,当符号位为低电平信号时,上电容电压 大于下电容电压 则让开关管T1和T3交替导通,T2和T4保持关断;反之,下电容电压 大于上电容电压 则让开关管T2和T4交替导通,T1和T3保持关断。因为在电容自均压网络工作时,需要控制上桥臂或者下桥臂交替开通,因此在设计中对PWM进行二分频,用二分频信号来确定选择两个上桥臂的T1或者T3开通,用二分频信号来选择两个下桥臂的T2或者T4开通。
 
为了防止同一个桥臂上两个开关管在切换导通时刻桥臂的直通,一般需要加入一段上下开关管都不导通的死区时间,因此在设计中用不同的二分频控制信号来分别决定同一桥臂上两个开关管的开通和关断。以符号位A,二分频信号B和PWM信号C作为输入量,以四个开关管控制信号G1、G2、G3和G4为输出信号的真值表,如表1所示。
 
 表1
 


 
由真值表可以得出所述数字逻辑运算单元生成控制信号的逻辑信号表达式:
 
 
式中,A表示符号位,即为比较器B的输出信号;B表示二分频信号;C表示原始的PWM
 
信号,即比较器A的输出信号。根据式(17)绘制的输出信号逻辑运算框图如图11所示。
 
原始PWM信号先通过二分频,二分频的输出及其取反信号用于控制两个上开关管还是两个下开关管交替导通,符号位及其取反信号用于控制两个上开关管的使能还是下开关管的使能。最终通过四个三输入与门进行信号的耦合,来分别控制四个开关管的开通关断。
 
下面通过具体实施例来验证本发明的微电网功率变换系统的工作性能。
 
按照上述理论分析和控制方法,将逆变器三相电压参考值设置为为所带的ABC三相负载分别为3Ω、10Ω、100Ω。
 
图12为传统逆变器输出电压波形,图12表明,0.81s到0.87s时可以发现B相电压波形发生了比较明显的畸变和不对称。
 
对0.38s-0.40s进行FFT分析,结果如图13所示。ABC三相电压输出基波幅值基本与56.6V相差不大,B相的三次谐波分量与直流分量比较大,C相的直流分量比较大。
 
上下电容电压波形如图14所示。可以看出,最后上电容电压和下电容电压的波动范围基本相同,最终上电容电压和下电容电压的波动范围都是32V-78V,波动频率为50Hz。
 
传统逆变器电路的中性线流入分裂电容中点的电流如图15所示,可以看出中性线电流不是正弦波形,但电流的正半周和负半周对称,所以一个周期内的平均值为0,上下电容电压的平均值因而相等。
 
加入分裂电容自均压电路(即本发明的变压器、四个开关管及其相关电路)后,按照本发明的电路拓扑结构设置微电网功率变换系统,得到的输出电压波形如图16所示,从图16可以看出,输出电压得到了很明显的改善。输出电压的傅里叶分析如图17所示,从图17可以看出输出电压基波幅值基本与给定电压幅值接近。谐波分量很小,B相电压波形畸变的情况不再发生。上下电容电压波形如图18所示,波动区间约为45V到55V。对分裂电容电压(即电容C1和C2)进行FFT分析结果如图19所示。从图19可以看出电容电压除了直流分量、基波分量还有部分谐波分量,其中7次和9次比较大。经过分裂电容自均压控制后,中性线电压波动更小。输出电压因而更加对称。
 
以上所述仅为本发明的具体实施方式,本领域的技术人员将会理解,在本发明所揭露的技术范围内,可以对本发明进行各种修改、替换和改变,因此本发明不应由上述事例来限定。
 
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

大云网官方微信售电那点事儿

责任编辑:lixin

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
分享到微博分享到微信
我要收藏
个赞
微电网 电力系统 发明专利
评论
点击加载更多