SEI膜被拉下神坛 谁将引领未来电解液设计?
自从索尼公司推出首款商用锂离子电池以来,石墨类材料一直是负极材料的主流。石墨负极在嵌锂后电势快速降低,接近金属Li负极的电势,这一特
商用锂离子电池电解液使用的多数溶剂都会发生Li+-溶剂共嵌入的问题,特别是PC溶剂,发生共嵌入时会严重的破坏石墨的结构,导致石墨分层剥落,从而严重的影响石墨负极的循环性能。一般而言,我们认为负极的SEI膜在防止溶剂共嵌入方面起到关键的作用,但是JunMing等人的研究却发现,相比于SEI膜,提高电解液锂盐(LiTFSI)的浓度和添加无机添加剂(LiNO3)在防止溶剂共嵌入方面起到的作用更大。
为什么这么说呢,我们首先来看一下JunMing等人的实验,首先JunMing组装了石墨/金属Li半电池,然后注入商用电解液(LiPF6,1mol/L,EC:DMC=1:1),在首次放电的过程中,随着Li的嵌入,负极电势降低,并发生了电解液的分解、SEI膜的形成。在此后的循环中由于SEI膜的形成,电池的循环曲线变得非常平滑,表明SEI膜能够起到保护作用。但是当JunMing将上述已经形成SEI膜的负极取出,重新装入半电池中,加入新的醚类电解液(1.0M/0.4M电解液,即LITFSI,1M,LiNO3,0.4M,DOL/DME=1:1,一种Li-S电池中常用的电解液)后,却发现首次放电/充电过程中仍然产生了较大的不可逆容量,这主要是由于电解液在负极表面分解和溶剂共嵌入造成,但是如果我们将上述电解液的锂盐浓度提高到2.5M(2.5M/0.4M电解液LITFSI,2.5M,LiNO3,0.4M,DOL/DME=1:1)后,就能够显著的抑制电解液的分解(如下图c所示)。然后JunMing又将在醚类2.5M/0.4M电解液中形成SEI膜的负极,重新放入低浓度的醚类1.0M/0.4M电解液中,电解液又开始在负极表面发生明显的分解(如下图d所示)。这说明1)碳酸脂类电解液中形成的SEI膜并不能十分有效的避免石墨的分层和剥落;2)提高锂盐的浓度能够有效的抑制石墨负极的失效。
免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞