大数据时代,信息安全隐患

2013-11-18 14:35:55 大云网  点击量: 评论 (0)
近年来,随着信息数据的爆炸式增长,数据的财富转换率也出现了大幅度的增长。这就造成了一个大数据时代的背景:很多人都把数据的增长看做了未来最重要的财富。但是数据的大幅增长,给越来越多的人敲响了警钟:大
数据结构化。数据结构化对于数据安全和开发有着非常重要的作用。大数据时代的数据非常繁杂,其数量非常惊人,对于很多企业来说,怎样保证这些信息数据在有效利用之前的安全是一个十分严肃的问题。结构化的数据便于管理和加密,更便于处理和分类,能够有效地智能分辨非法入侵数据,保证数据的安全。数据结构化虽然不能够彻底改变数据安全的格局,但是能够加快数据安全系统的处理效率。未来数据标准化、结构化是一个大趋势,不管是怎样的数据安全模式都希望自己的数据更加标准。

第二,网络层的安全策略是端点数据安全的重点加固对象。常规的数据安全模式往往喜欢分层构建。这也是数据安全的常规做法。现有的端点安全方式对于网络层的安全防护并不完美。一方面是大数据时代的信息爆炸,导致网端的非法入侵次数急剧增长,这对于网络层的考验十分的严峻;另一方面由于云计算的大趋势,现在的网络数据威胁方式和方法越来越难以预测辨识,这给现有的端点数据安全模式造成了巨大的压力。在未来,网络层安全应当作为重点发展的一个层面。在加强网络层数据辨识智能化,结构化的基础上加上于本地系统的相互监控协调,同时杜绝非常态数据的运行,这样就能够在网络层构筑属于大数据时代的全面安全堡垒,完善自身的缺陷。
       
 第三,本地策略的升级。对于端点数据安全来说已经具备了成熟的本地安全防护系统,但是由于思路的转化,现有的端点数据安全系统有一定认识上的偏差,需要进行及时调整。由于大数据时代的数据财富化导致了大量的信息泄露事件,而这些泄露事件中,来自内部的威胁更大。所以在本地策略的构建上需要加入对于内部管理的监控、监管手段。用纯数据的模式来避免由于人为原因造成的数据流失、信息泄露。由这一点出发我们可以预想到在未来的数据安全模式中,管理者的角色权重逐渐分化,数据本身的自我监控和智能管理将代替一大部分人为操作。这对于大部分企业来说都是能够减少损失和成本的大事情,值得引起大家的关注和思考。在本地安全策略的构建过程中还要加强与各个环节的协调。由于现在的数据处理方式往往会依托于网络,所以在数据的处理过程中会出现大量的数据调用,在调用过程中就容易出现很大的安全威胁。这个时候如果能够把本地和网络的链接做得更细腻,完善缓存机制和储存规则,就能够有效保证数据源的纯洁,从根本上杜绝数据的安全威胁。本地数据安全策略还有很多需要注意的问题,也有很多还没有发现的隐患,这些都需要在完善自有系统的基础上,继续开发。
大云网官方微信售电那点事儿

责任编辑:和硕涵

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞