盘点:2013年光通信领域科学前沿技术

2013-12-12 09:47:56 OFweek光通讯网  点击量: 评论 (0)
伴随着人们对高速传输需求的上升,2013年的科学界也在上演一场速度比拼,科学家们通过开发新的传输材质、新的工艺结构、新的编码技术等多种方式,实现更高效的通信。另外,在光集成、通信安全等领域也获得了不同

、细胞整体的分子级仿真,纳米结构设计等更多功能。IBM公司位于纽约州约克敦海茨的TJ华盛顿研究中心的研究人员乔纳森说:“计算机预计将在2020年左右达到亿亿次级,但在此之前还需进行大量的研究。”为了实现该目标,研究人员必须找到计算机在较低功耗下可快速传输大量数据的方法。

通过结合IBM公司32纳米绝缘体上硅(SOI)CMOS工艺制成的集成电路,以及美国住友电气创新设备公司(以前的商埃姆科公司)制造的先进垂直腔面发射激光器(VCSEL)和光电探测器,乔纳森和同事制造出新的高能效光通信链路,每秒传输速度达到25Gbit,总功耗只有24mW,约合每比特耗能1pJ。乔纳森说:“与之前的记录相比,数据传输速度提高了66%,功耗降低了一半。我们将继续提高光通信的传输速度和功耗效率。人们总希望能以更低的功耗传输更多的数据,这也正是我们努力的方向。”

新技术为实现下一代单芯片光互连打开大门

可将光信号变成沿金属表面行进的波

美国科学家制造出一种新的纳米尺度的连接设备,能将光学信号转变成沿金属表面行进的波。更为重要的是,新设备还能识别偏振光的偏振方向,并据此朝不同的方向发送信号。

科学家们表示,最新研究提供了一种新的方式,让人们能在亚波长尺度下精确地操控光,而不会破坏可能携带有数据的信号,这为有效地从光子设备传递信息给电子设备从而实现下一代单芯片光子互联打开了大门。

新连接设备由一层薄薄的金组成,其上布满小孔,科学家们设计的天才之处正在于这些切口形成的像鲱鱼鱼骨(箭尾形)一样的图案。

新结构非常微小,每个图案单元比可见光的波长还要小,因此,科学家们认为,新结构应该很容易同平面光学等新奇技术整合。然而,卡帕索表示,新设备最有可能用于未来的高速信息网络内--纳米尺度的电子设备(目前已经出现)、光子设备和等离子体有望集成在一块微芯片上,从而实现下一代单芯片光子互联。


南开联手哈佛:为光电子集成与互联技术发展奠定基础

在手机、电脑、网络等现代社会信息化技术飞速发展的今天,以微电子技术为基础的电子信息技术引发了一场改变人类生活和工作的信息化革命,其特点是依靠集成电子器件提供更高的信息处理速度、存储密度和片上可集成度等能力,但受到纳米尺寸的瓶颈限制,集成电子器件已开始受到制约。与微电子技术发展并行的另一门高新技术-光电子技术,在实现集成光子回路、互联光路、光计算等功能方面显现出巨大的潜力和优势,有可能是取代“集成电路”的新一代信息技术的重要支柱,该技术的关键点是如何在纳米尺寸高度集成的芯片上实现人们像操纵电子那样操控光子。

表面等离激元(SPPs)是在金属表面区域的一种自由电子和光子相互作用的形成的电磁模,经常被称为“能够实现导线传输光子”的信息载体,它在发展新一代光电子集成技术中发挥重要作用,但怎样在纳米尺寸的芯片上实现SPPs的“传输控制”是该领域的一个国际研究热点。

4月19日,由南开大学信息技术科学学院教授、长江学者袁小聪带领的新加坡南洋理工大学课题组与美国哈佛大学Capasso教授课题组合作,在国际顶级刊物Science(科学)上发表了题目为“可重构偏振调控型表面等离激元定向耦合”的文章,解决了SPPs在芯片上传输过程中的“交通控制”问题。

文章提出了一种全新的SPPs耦合方式,通过一系列亚波长“人”字型微纳金属结构,解决了目

大云网官方微信售电那点事儿

责任编辑:廖生珏

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞