人工智能正在推动超级监控
Hauptmann表示使用车牌跟踪功能跟踪车辆是"一个已经得到解决的实际问题",在受控设置中的面部识别也是一样的。(使用低质量的闭路电视监控视频进行面部识别就完全是另一回事了。)对汽车和衣物等物品的识别也非常可靠,在多台摄像机之间自动跟踪一个人也是可以实现,但前提是条件是正确的。Hauptmann表示:"在一个非拥挤的场景中跟踪一个人的效果可能非常好,但是在拥挤的场景中,还是算了吧。"他表示,如果这个人穿着的是不起眼的服装,要做到这一点就特别难。
一些人工智能监控任务已经解决了;另外一些还需要继续努力
但是,即使是这些非常基本的工具也可以产生非常强大的效果。比如在莫斯科,一个类似的基础设施正在组装,将面部识别软件插入到一个集中式系统中,该系统拥有超过10万台高分辨率摄像头,覆盖了这个城市90%以上的公寓入口。
在这种情况下,可能会有一个良性循环,随着软件越来越好,系统会收集更多的数据,从而帮助软件变得更好。Hauptmann表示:"我认为这一切都会有所改善。"他表示:"这种情况正在出现。"
如果这些系统已经在工作了,那么我们就已经有了像算法偏差这样的问题。这可不是一个假设的挑战。研究表明,机器学习系统吸收了为它们编写程序的社会的种族歧视和性别歧视--从总是会将女性放置在厨房的图像识别软件到总是说黑人更容易再次犯罪的刑事司法系统,比比皆是。如果我们使用旧的视频剪辑来训练人工智能监控系统,例如采集自闭路电视视频监控或者警察佩戴的摄像头的视频,那么存在于社会中的偏见就很可能会延续下去。
Meredith Whittaker是纽约大学(NYU)关注道德的"AI Now"研究所的联席主任,她表示,这个过程已经在执法过程出现了,并将扩展到私有部门。Whittaker举出了Axon(以前被称为Taser)的例子,该公司收购了几家人工智能公司,以帮助其将视频分析功能集成到产品中。Whittaker表示:"他们得到的数据来自警察佩戴的摄像头,这些数据告诉了我们很多关于单个警务人员会关注谁的情况,但是并没有给我们一个完整的描述。 "她表示:"这是一个真正的危险,我们正在将带有偏见的犯罪和罪犯的图片普遍化。"
ACLU高级政策分析师Jay Stanley表示,即使我们能够解决这些自动化系统中的偏见,也不能使它们变得良性。他说,将闭路电视视频监控摄像头从被动的观察者转变为主动的观察者可能会对公民社会产生巨大的不利影响。
"我们希望人们不仅仅拥有自由,还要感受到自由。"
Stanley表示:"我们希望人们不仅仅拥有自由,还要感受到自由。这意味着他们不必担心未知的、看不见的观众会如何解释或曲解他们的每一个动作和话语。" Stanley表示:"要担心的是人们会不断地自我监控,担心他们所做的一切都会被曲解,并给他们的生活带来负面的后果。"
Stanley还表示,不准确的人工智能监控发出的错误警报也可能导致执法部门和公众之间更加危险的对抗。比如说,想想看Daniel Shaver的枪击事件吧,在看到Shaver拿着枪后,一名警察被叫到德克萨斯州的一个旅馆房间里。警长Charles Langley在Shaver按照他的要求趴在地面上时,开枪射杀了他。而Shaver被发现持有的枪是一支粒丸枪,这是他用来从事他的害虫控制工作的。
如果一个人可以犯这样的错误,电脑还有什么机会?而且,即使是监控系统变得部分自动化,这样的错误会变得更加常见还是更少?Stanley表示:"如果技术出现在那里,就会有一些警察不得不照看那里。"
当人工智能监控变得普及的时候,谁来管理这些算法呢?
Whittaker表示,我们在这个领域看到的只是人工智能大趋势的一部分,在这个趋势中,我们使用这些相对粗糙的工具,尝试着根据人们的形象对他们进行分类。她列举了去年发表的一项有争议的研究作为一个类似的例子,该研究声称能够通过面部识别来确定性取向。人工智能给出的结果的准确性值得怀疑,但批评人士指出,它是否有效并不重要;重要的是人们是否相信它有用,并且是否会仍然使用数据做判断。
Whittaker表示:"令我感到不安的是,许多这样的系统正在被注入我们的核心基础设施之中,而且没有让我们可以提出关于有效性问题的民主程序,也没有通知大家将要部署这些系统。"Whittaker表示:"这不过是正在出现的又一个新的例子:算法系统根据模式识别提供分类并确定个体类型,可是这些识别模式是从数据中提取的,而这些数据里包含了文化和历史的偏见。"
当我们向IC Realtime公司询问人工智能监控可能如何被滥用的问题时,他们给出了一个在科技行业常见的答案:这些技术是价值中立的,只是如何使用它们以及由谁来使用它们才决定了它们是好是坏。Sailor表示:"任何新技术都面临着有可能落入不法之徒的手中的危险。"Sailor表示:"任何技术都是如此……而我认为在这个问题上,利远大于弊。"
责任编辑:任我行