电力行业如何应用大数据

2013-10-17 15:39:20 人民邮电报  点击量: 评论 (0)
大数据不是ICT行业的专利。目前,金融、广电等传统行业都在积极借助大数据的力量,帮助企业实现转型。在电力行业,大数据已经被视作企业战略层面的重要议题:国家电网就在北京亦庄、上海、陕西建立了三个大数据中

实时用电信息和地理、气象等信息全部整合,设计了一款“电力地图”。该图以街区为单位,可以反映各时刻的用电量,并可将用电量与人的平均收入、建筑类型等信息进行比照。通过完善“电力地图”,能更准确地反应该区经济状况及各群体的行为习惯,以辅助投资者的决策,也可为城市和电网规划提供基础依据。

注意:确保数据质量

大数据时代为电力行业带来了新的发展机遇,同时也提出了新的挑战。通过良好的大数据管理,可切实提高电力生产、营销及电网运维等方面的管理水平。为实践大数据战略,应做好以下准备工作。

做好数据收集和治理工作。如果数据错误、过时或者片面,分析结果将是不正确的;而如果数据冗余、混乱,则会增加获取数据有效信息的难度,并使数据处理效率低下。因此,确保数据高质量、规范化、格式统一是大数据应用的基础。

提高相关技术能力。有了优质的数据后还需要足够的数据存储、分析和处理能力,才能充分有效地应用数据。电力企业应提升海量数据存储、分布式计算、数据挖掘、统计分析、数据可视化等技术,以满足大数据战略的需求。

培养电力大数据人才。大力培养大数据技术专业型人才,尤其是技术与数据建模分析的复合型人才,是大数据战略实行的保障。

挑战中见需求:

如何从大数据中提取价值

质量较低、共享不畅、防御脆弱、基础不牢,对于这些电力行业推进大数据的困扰,电信行业是不是也有似曾相识的感觉?这些问题中的一部分,电信业同样需要深思;还有一些问题,则恰恰是电信业的长处,是电信业推进电力行业信息化的机遇。

数据质量较低,数据管控能力不强。大数据时代,数据质量的高低、数据管控能力的强弱直接影响了数据分析的准确性和实时性。目前,电力行业数据在可获取的颗粒程度,数据获取的及时性、完整性、一致性等方面的表现均不尽如人意,数据源的唯一性、及时性和准确性急需提升,部分数据尚需手动输入,采集效率和准确度还有所欠缺,行业中企业缺乏完整的数据管控策略、组织以及管控流程。

如何从海量数据中提取有价值的信息?这也是电信业面临的问题。有观点认为,可以用智能信息基础设施替换复杂的孤立的数据库,让企业能够在需要时捕捉、存储信息。也有观点认为,可以倚靠软件的处理能力来甄别“垃圾”数据和“有价值”数据。究竟哪种方式更为有效,目前仍无定论。而无论哪种情况,都需要制定一个数据采集的标准,在时间、精度上进行规范,从而为后续的数据分析打好基础。

数据共享不畅,数据集成度不高。大数据技术的本质是从关联复杂的数据中挖掘知识,提升数据价值,单一业务、类型的数据即使体量再大,缺乏共享集成,其价值就会大打折扣。目前,电力行业缺乏行业层面的数据模型定义与主数据管理,各单位数据口径不一致。行业中存在较为严重的数据壁垒,业务链条间也尚未实现充分的数据共享,数据重复存储的现象较为突出。

打破企业的“门户之见”,在行业中建立一个资源池,让使用者可以按需获取数据资源。从电信业的角度来看,现在,电信运营商之间的合作在不断推进,例如,运营商开发了融合的手机游戏计费平台;在北京电信网上营业厅微信平台上,用户不仅可以自助查询电信业务,还能查询联通和移动业务的使用费,这样共享数据资源的经验也可在大数据的应用过程中加以推广。

防御能力不足,信息安全面临挑战。电力大数据由于涉及众多电力用户的隐私,对信息安全也提出了更高的要求。电力企业地域覆盖范围极广,各类防护体系建设不平衡,信息安全水平不一致,特别是偏远地区单位防护体系尚未全面建立,安全性有待提高。行业中企业的安全防护手段和关键防护措施也需要进一步加强,从目前的被动防御向多层次、主动防御转变。

建立与大数据相适应的安全和隐私保护机制,通过技术手段和加强企业自律来保证数据的安全。

承载能力不足,基础设施亟待完善。电力数据储存时间要求以及海量电力数据的爆发式增长对IT基础设施提出了更高的要求。目前,电力企业大多已建成一体化企业级信息集成平台,能够满足日常业务的处理要求,但其信息网络传输能力、数据存储能力、数据处理能力、数据交换能力、数据展现能力以及数

大云网官方微信售电那点事儿

责任编辑:廖生珏

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞