光伏电站晶硅组件如何检测与分析?
1.3 组件背板温度采集
组件背板温度数据的采集操作有下面两种,图7为胶带粘接式测试,其探头分为金属或者环氧树脂探头,图8为吸盘式。一般情况下,若温度数据的采集精度不够,还需使用高精度IR热成像仪进行辅助测试以确定实际的组件背板温度,需要注意的一点是很多厂家将背板温度当成电池片的结温,这是不正确的,根据美国Sandia实验室的经验值,一般地面电站上的晶硅电池片结温在组件背板温度值的基础上再加上2℃-3℃。或者也可以根据国标《GBT18210-2000 晶体硅光伏方阵I—V特性的现场测量》推荐的开路电压法来推算结温,但是其过程较为繁琐,不适用于实际户外操作。
图7 胶带粘贴式测试(环氧树脂探头)
图8 吸盘式温度传感器探头
1.4 功率测试值的修正方法
便携式I-V曲线测试仪可以测试单片组件、组串和单台汇流箱直流电路的I-V曲线。一般仪器自身也可以将实际自然光照条件下的实测功率数据进行自动修正,即修正到标准测试条件(STC)下的峰值功率。测试仪修正的内容为温度和光强这两项修正,并未考虑到实际组件的灰尘遮挡损失、组串匹配损失及仪器自身的测试精度,另外如果在汇流箱的输入端进行测量,方阵的各个组串到达汇流箱的线缆长度不尽相同,也会存在电缆损耗,同样影响对组件或方阵真实功率的判断,因此还需要进行第二次修正,将上述损耗补偿到实际功率值当中,具体参考如下几点:
1.灰尘遮蔽损失补偿损失Ls
需要根据电站所处的地理位置和自然环境,测试期间天气状况及组件表面积灰状况,可在现场实际测试和计算,一般可以尝试这两种方法:①在现场选取典型的两块组件进行对比,一块擦除掉表面灰尘,另一块不做处理,可通过I-V测试功率,确定灰尘遮挡损失。②选择两个组串,一串不清洗,另一串清洗,一般组串电流和太阳辐照可认为是线性正比关系,对于组串式逆变器,可监测组串的电流、实时辐照和环温,将实时电流换算到STC下的电流进行对比。对于集中式,可用过智能汇流箱监测每一串的工作电流进行分析。
2.光伏电缆线损补偿损失Lc
4mm2光伏电缆电阻为4.375Ω/km,假设取每一组串电缆平均长度40米,工作电流值最大8A,可计算出每一组串线损为组串功率的0.28%左右,具体值还需要根据实际线缆长度来计算。
3.串联失配损失Lm
组串当中各个组件实际工作电流不一致导致木桶效应,一般经验值可取1%。当然实际值可对组串的每一块组件进行测试,获取Im值的最小值,以此计算串联失配损失。
4.测试仪器误差Le
对于I-V特性曲线测试仪,如产品供应商给出的测试最大误差范围±5%,可根据实际情况取正偏差的1.5-2.5%。
因此根据上述可简单得到功率修正公式:Px=Pc*(1000/G)/((1+(β*(Tc-25℃))*(1-Ls)*(1-Lc)*(1-Lm)*(1-Le))(其中Px为修正功率,Pc为实测功率,G为方阵斜面实时辐照度,β组件功率负温度系数,Ls灰尘遮挡损失,Lc线损,Lm匹配损失,Le设备误差损失)。
二、热斑问题分析
组件上的热斑效应,一般由外部原因和内部原因两类造成。常见的外部原因有:组件表面积灰严重且厚薄不均,鸟粪、污物、落叶、方阵组件前部的草木以及周边建筑物或电线杆等阴影遮挡,以及场地不平整、方阵东西设计间距不足造成的自阴影等,使得组件局部光照低于其他正常部位,被遮挡的电池或组件被置于反向偏置状态,消耗其他电池的功率,而功率以热能形式释放,导致该电池片温度较其他正常电池片的温度高。外在因素导致的热斑问题在光伏电站中普遍存在,可在日常运维工作中采取清洗等措施进行消除。
内部原因和组件的生产制造工艺(特别是焊接和层压)、电池片质量(反向特性、边缘漏电流过大)、接线盒中二极管的长期可靠性、EVA和背板的耐高温及阻燃能力等因素都有关系,内部原因造成的热斑由于是先天性不足,在电站的运行期间将长期存在,对电站的可靠性带来严重安全隐患,任何一个热斑点造成的功率损耗将限制了组串的输出功率。
图9-图14列举了西部地面电站的部分热斑效应案例,如图9所示,组件有多个热斑点且随机分布:由于或者电池片本身的问题,互联条不清洁造成的污染和虚焊、隐裂、裂片或断栅等原因造成。热斑导致组件局部的高温较高,有的甚至高达100℃以上,而其周边温度仅30多℃,尤其在我国西北地区,在夏日午后持续强烈光照和高温环境下,组件局部温度将持续升高,其结果可能导致玻璃爆裂,组件背板局部老化,严重的甚至会起火燃烧。
责任编辑:蒋桂云