详解钝化接触太阳能光伏电池
晶硅太阳能电池的表面钝化一直是设计和优化的重中之重。从早期的仅有背电场钝化,到正面氮化硅钝化,再到背面引入诸如氧化硅、氧化铝、氮化硅等介质层的钝化局部开孔接触的PERC/PERL设计。虽然这一结构暂时缓解了背面钝化的问题,但并未根除,开孔处的高复合速率依然存在,而且使工艺进一步复杂。近几年来,一种既能实现背面整面钝化,且无需开孔接触的技术成为机构研究的热点,这就是钝化接触(PassivatedContact)技术。当电池两面均采用钝化接触时,还可能实现无需扩散PN结的选择性接触(SelectiveContact)电池结构。本文将详细介绍钝化接触技术的背景,特点及研究现状,并讨论如何使用这一技术实现选择性接触电池。
表面钝化的演进钝化的“史前时代”
在90年代之前晶硅电池商业化生产的早期,太阳能电池制造商已经开始采用丝网印刷技术,但与我们如今使用的又有所不同。主要的区别在于两点:首先当时的正面网印银浆没有烧穿(Fire-through)这一功能,因此在当时的生产线上,需要先进行网印,而后沉积当时的TiO2减反射层。另一个区别在于当时的银浆与硅形成有效欧姆接触的能力较差,只有与高掺杂的硅才可以接触良好。由于TiO2没有很好的钝化功能,人们在当时并没有过多的考虑钝化。而且由于减反射层在金属电极之上,因此沉积的时候需要用模版遮挡主栅,以便后续的串焊。
虽然这一时期,在实验室中,科研人员已经采用SiO2钝化电池表面,并取得不俗的开路电压和效率。
SiNx:H第一次进化
90年代,科研机构和制造商开始探索使用等离子体增强化学气相沉积(PECVD)技术制备含氢的氮化硅(SiNx:H)薄膜用作电池正面的减反射膜。其中原因之一在于相对合适的折射率,但更重要的原因则在于氮化硅优良的的钝化效果。氮化硅除了可以饱和表面悬挂键,降低界面态外,还通过自身的正电荷,减少正面n型硅中的少子浓度,从而降低表面复合速率。SiNx中携带的氢可以在烧结的过程中扩散到硅片中,对发射极和硅片的内部晶体缺陷进行钝化,这对品质较低的多晶硅片尤其有效,大幅提高了当时太阳能电池的效率。
伴随着钝化材料上的创新,银浆材料与烧结工艺上的变革也同时到来,那就是可以烧穿的浆料和共烧(Co-firing)烧结工艺。有了烧穿特性后,可以先进行减反射膜的沉积,后网印浆料,然后烧结。由于顺序的颠倒,不用再担心金属栅线上覆盖的减反射层影响焊接,也省去了沉积TiO2需要的部分遮挡。同时人们发明了将正反面浆料一次烧结的共烧工艺,在一次烧结中,正面的银浆穿过SiNx与硅形成接触,而背面的铝浆也同步形成背面电极和背电场(backsurfacefield)。这一系列改进大大简化了丝网印刷电池的工艺,并逐渐成为了晶硅电池生产的主流。
太阳能电池表面钝化结构的演进
AlOx第二次进化
随着电池正面的钝化效果和接触性能由于SiNx的使用和银浆改进在不断提高,进一步优化正面已经进入瓶颈阶段,人们把视线投向了另一个复合严重的区域,那就是电池的背表面。虽然在传统丝网印刷的晶硅电池中,铝背场可以减少少子浓度,减少复合,但仍然无法与使用介质层带来的钝化效果相比较。其实背面的介质层钝化也非新鲜话题,UNSW早在90年代就提出了发射极和背面钝化(PERC)结构以及发射极和背面钝化局部扩散(PERL)结构,在早期设计中,这两种结构都在背面采用氧化硅层钝化,局部开孔实现点接触以减少非钝化区域的面积。两者的区别在于是否在开口区域进行局部掺杂扩散,局部扩散增加工艺难度,但会形成局部背电场,减少接触部分的复合速率。但高品质氧化硅的生长需要较高的温度,对于已经经过高温扩散的硅片来说,为减少对体少子寿命的影响,应尽量减少长时间的高温工艺,因此对其他材料的搜索在2000年左右提上议事日程。
既然SiNx已经在电池正面证明有诸多好处,那能否在背面继续使用这一材料呢。答案是否定的,上面已经提到,SiNx钝化的机制之一在于利用其正电荷减少正面n型区的少子浓度,可是到了p型的背面,其正电荷将有可能在背面诱导形成一层n型反转层(inversionlayer),这会造成背面的旁路损失,影响电流,降低电压和填充因子。
那么问题来了,钝化背面究竟哪家强呢?在欧洲几家研究机构的努力下,一种对光伏研究人员并不陌生的材料的又一次走到台前,那就是氧化铝(AlOx)。其不但像SiNx一样可以钝化表面缺陷,还拥有与SiNx相反的负电荷,正是因为这一点,在p型硅背面使用AlOx钝化层,不但不会形成反转层造成漏电,反而会增加p型硅中多子浓度,降低少子浓度,从而降低表面复合速率。不过AlOx的使用也需要伴随这工艺的改进和设备的进步,例如解决高速沉积AlOx的问题,氧化铝本身的不稳定性以及良品率较低等问题。
选择性接触电池能带图
钝化接触,第三次进化?
PERC以及PERL结构的电池已经拥有相对完善的表面钝化结构,不过将背面的接触范围限制在开孔区域,除了增加了工艺的复杂度外,开孔的过程采用不同的工艺还会对周围的硅材料造成不同程度的损伤,这也额外的增加了金属接触区域的复合。由于开孔限制了载流子的传输路径,使之偏离垂直于接触面的最短路径并拥堵在开口处,增大了填充因子的损失。有没有一种办法即能降低表面复合,又无需开孔呢。这就需要提到近几年呼声高涨的钝化接触(PassivatedContact)技术。
假设我们能找到这样一种材料或结构,其满足(1)拥有良好的表面钝化效果;(2)分离准费米能级;(3)可以高效传输一种载流子。那么就可以把这一结构用于电池的表面,形成即满足钝化要求,又无需开孔即可传输电流的钝化接触。
德国弗劳恩霍夫太阳能研究所已经开发出一项名为TOPCon(TunnelOxidePassivatedContact,隧穿氧化层钝化接触)的技术。研究人员首先在电池背面用化学方法制备一层超薄氧化硅,然后再沉积一层掺杂硅薄层,二者共同形成了钝化接触结构,这两层材料为硅片的背面提供了良好的表面钝化,而由于氧化层很薄,硅薄层有掺杂,多子可以穿透这两成钝化层,而少子则被阻挡,如果在其上再沉积金属,就可以得到无需开孔的钝化接触。这一技术的详细信息我们将在下文中讨论。
不过这样的钝化接触只能用在电池背面吗,如果用在正面会怎样?
HIT异质结电池能带图
没有扩散PN结的太阳能电池
其实这并非一个新鲜的问题,虽然钝化接触电池这一说法近两年才出现,但其所描述的结构确实不折不扣的早已为科学家们所研究。这种通过外加材料和结构弯曲能带,而非电池吸收层本身掺杂,来实现对载流子选择性通过的表面接触设计,我们称为选择性接触(SelectiveContact)电池,而这一设计与我们传统认识中的通过扩散得到PN结的电池有根本的不同。
虽然我们现在常见的电池有高温扩散得到的PN结,而PN结的内建电场被认为是分离光生载流子并让太阳能电池发电的动力。而其实太阳能电池并不一定必须要有明确的PN结。上世纪70年代,MartinGreen教授就提出了无需扩散PN结的金属-绝缘层-半导体(MIS)结构太阳能电池。1985年,EliYablonovitch教授就提出理想的太阳能电池应该是“采用两个异质结来设计”,即将吸收材料置于两个宽带隙材料之间。而SunPower的创始人之一RichardSwanson博士也在10年前预测接近理论效率的晶硅太阳能电池应“在硅和金属之间,放置一层宽带隙材料构成异质结”。这些结构都指向选择性接触电池。
责任编辑:蒋桂云